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Neurofibrillary tangles (NFT) and b-amyloid plaques are the neurological hall-
marks of both Alzheimer’s disease and an unusual paralytic illness
suffered by Chamorro villagers on the Pacific island of Guam. Many Chamor-
ros with the disease suffer dementia, and in some villages one-quarter of the
adults perished from the disease. Like Alzheimer’s, the causal factors of
Guamanian amyotrophic lateral sclerosis/parkinsonism dementia complex
(ALS/PDC) are poorly understood. In replicated experiments, we found that
chronic dietary exposure to a cyanobacterial toxin present in the traditional
Chamorro diet, b-N-methylamino-L-alanine (BMAA), triggers the formation
of both NFT and b-amyloid deposits similar in structure and density to
those found in brain tissues of Chamorros who died with ALS/PDC. Vervets
(Chlorocebus sabaeus) fed for 140 days with BMAA-dosed fruit developed
NFT and sparse b-amyloid deposits in the brain. Co-administration of the diet-
ary amino acid L-serine with L-BMAA significantly reduced the density of NFT.
These findings indicate that while chronic exposure to the environmental toxin
BMAA can trigger neurodegeneration in vulnerable individuals, increasing the
amount of L-serine in the diet can reduce the risk.

1. Introduction
(a) Toxins and neurodegenerative illness
The relationship between environmental toxins and neurological disease has been
of interest since residents of Minamata Bay, Japan, were sickened by chronic
dietary exposure to methyl-mercury-laden fish. Parkinson’s disease (PD) has
been linked to rotenone or paraquat exposures in agricultural workers [1].
PD also was diagnosed in ‘frozen addicts’, users of a recreational drug
contaminated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [2]. Exposures
to pesticides, metals, solvents and certain types of volatile anaesthetics have
additionally been linked to PD, while exposures to lead, mercury and pesticides
have been suggested as risk factors for amyotrophic lateral sclerosis (ALS) [1].
However, the role of naturally occurring environmental toxins in progressive
neurodegenerative disease has not been extensively studied.

(b) A paralytic disease among Pacific Islanders
In the 1950s, US Army physicians described a puzzling ALS-like disease among
the indigenous Chamorro villagers of Guam [3]. In the 1960s, amyotrophic
lateral sclerosis/Parkinsonism dementia complex (ALS/PDC) was described
based on histopathology and clinical symptoms which resemble aspects of
Alzheimer’s disease (AD), ALS and PD. Neurofibrillary tangles (NFT) in the
brains of individuals with ALS/PDC have similar immunohistology and struc-
ture as those found in the brains of AD patients but are biochemically and
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regionally more heterogeneous [4,5]. Many afflicted villagers
suffered from dementia. Histopathology of Chamorros who
died prior to manifesting clinical symptoms of ALS/PDC
suggests that depositions in the brain pre-dated clinical
onset [4]. No clear pattern of inheritance for the disease has
been ascertained [6]. Since even outsiders who adopted a
Chamorro lifestyle experienced an increased risk of illness
[7], a common environmental exposure seemed likely. Deter-
mining the nature of the toxin, however, was difficult due to
a significant delay between exposure and clinical symptoms,
extending years or even decades [8].

(c) BMAA: a neurotoxic amino acid in cycad seeds
In the 1960s, consumption of flour made from the gameto-
phyte of cycad seeds (Cycas micronesica Hill) was proposed
as a cause of the disease. Interest increased when a novel neu-
rotoxic amino acid, L-BMAA, was isolated from cycad seeds
by Bell [9]. In the 1980s, BMAA fed to macaques was found
to cause acute neurological symptoms [10], a finding that
was discounted when it was argued that an equivalent
human dose would require the consumption of unreasonable
amounts of cycad seed flour [11]. BMAA was subsequently
identified as a cyanobacterial product [12]. The toxin is bio-
magnified in flying foxes, which are eaten by Chamorros
[13]. Equally important was the discovery that a majority of
BMAA in cycad seeds binds to proteins and cannot be
released by washing with water, but only on hydrolysis,
suggesting that BMAA doses ingested by the Chamorros
had been previously underestimated [14,15]. Evidence
continued to build for the link between BMAA and neuro-
degenerative disease with respect to cyanobacterial exposure
and epidemiology [15–20].

A key missing puzzle piece has been experimental
evidence that chronic dietary exposure to BMAA triggers
neuropathological changes consistent with ALS/PDC, which
presumably should occur prior to the onset of clinical symp-
toms. It is now known that in vivo BMAA exposure generates
fibril formation and cognitive deficits in rodents [21],
although some earlier animal studies that focused on acute
rather than chronic exposure were inconclusive [22]. This
finding suggests that chronic BMAA exposure more closely
models early disease.

(d) BMAA in the Chamorro diet
BMAA is produced by symbiotic cyanobacteria of the genus
Nostoc harboured in specialized cycad roots emergent in the
leaf litter above the soil. BMAA accumulates in the gameto-
phytes of cycad seeds, which, after washing, are used by
villagers to prepare tortilla flour, dumplings and to thicken
soups and stews. Animals, including flying foxes, feral deer
and pigs that feed on cycad seeds, which in turn are
consumed by villagers, also accumulate BMAA in their tis-
sues [13]. BMAA is biomagnified up to 10 000-fold from its
production by cyanobacteria to its concentration in volant
mammals [12,13,15].

(e) BMAA exposures beyond Guam
Diverse taxa of cyanobacteria produce BMAA [23,24], which
is biomagnified in some marine ecosystems, accumulating in
sharks, bottom-dwelling fish and shellfish. BMAA also
occurs in cyanobacterial soil crusts [25]. BMAA exposure

through inhalation of desert dust has been suggested as trig-
gering the increased incidence of ALS a decade subsequent to
the deployment of military personnel in Operation Desert
Storm [26]. Similarly, inhalation of aerosolized BMAA from
wave break has been proposed to explain the increased risk
of ALS in individuals who live near lakes with persistent
cyanobacterial blooms [18,19]. Exposure through ingestion
of drinking water has not been ruled out [27]. Maternal
exposures to BMAA may also increase the risk of ALS in
neonates later in their life [20,21].

( f ) Mechanisms of BMAA-induced neurodegeneration
Through activation of metabotropic glutamate receptors such
as mGluR5 [28] or ionotropic glutamate receptors including
the N-methyl-D-aspartate receptor, kainate or the a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, BMAA
selectively kills subpopulations of NADPH-diaphorase-positive
motor neurons [29]. It is toxic to glial cells [30] and causes motor
neuron damage and astrogliosis in the ventral horn [31]. BMAA
potentiates different neurotoxic insults including methyl mer-
cury [32], which co-occurs in some fish. BMAA rapidly
crosses the blood–brain barrier, where it is captured by the
central nervous system (CNS) in a time period consistent
with protein misincorporation [33]. BMAA can be mistaken
by cellular machinery for L-serine and be misincorporated
into proteins, leading to protein misfolding, aggregation
and subsequent apoptosis [34]. Misincorporation of BMAA
into proteins has been proposed as a mechanism for bioaccu-
mulation as well as a mechanism for slow release of BMAA
within the CNS over years depending on rates of protein
turnover [15]. Misincorporation of even the 20 canonical
amino acids at error rates as low as 1/10 000 can lead to neu-
rodegeneration in laboratory animals [35]. BMAA exposure
results in hyperphosphorylated tau, possibly by decreasing
activity of protein phosphatase 2A (PP2A) through activation
of the mGluR5 receptor and subsequent dissociation of the
catalytic subunit PP2Ac [36]. In Chamorro ALS/PDC
brains, PP2A activity is significantly decreased, resulting in
a significant increase in hyperphosphorylated tau [36].

(g) Producing an animal model of BMAA-induced
neuropathology

The occurrence of BMAA in post-mortem brain tissues of
Chamorro ALS/PDC patients but generally not in non-Cha-
morro control patients suggests that chronic dietary exposure
to BMAA is an environmental risk factor for ALS/PDC
[12,15,37]. To satisfy Koch’s postulates of disease causation
[38], it is necessary to show that chronic exposure to BMAA
causes healthy individuals to develop neurodegenerative dis-
ease and that BMAA can be re-isolated from those
individuals in which neurodegeneration has been induced.

NFT and b-amyloid deposits have not both been produced
in human neuronal cell culture, so in vivo experiments are
necessary. However, no animal species other than humans is
known to develop ALS/PDC or AD. Furthermore, NFT and
b-amyloid deposits have not both previously been produced
in any single animal model, with the exception of a triple trans-
genic mouse model [39] in which the structure and density
of the NFT significantly differ from the human condition
(K. Iqbal 2015, personal communication). Some non-human
primates including squirrel monkeys, chimpanzees, gorillas
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and orangutans of great age as well as lemurs develop senile
plaques that are immunopositive for b-amyloid, and a single
41-year-old chimpanzee was found to produce paired helical
tau filaments [40]. Vervets are known to accumulate vascular
b-amyloid deposits with age, but not NFT and other tau
inclusions [41]. We therefore decided to chronically expose ver-
vets to BMAA for an extended period and to examine their
brain tissues for tau inclusions and amyloid deposition consist-
ent with ALS/PDC pathology. Since matching the duration of
chronic exposure to the years—even decades—required for
Chamorros to develop ALS/PDC [8] is unfeasible, we shor-
tened chronic exposure to BMAA to 140 days. Since L-serine
has been found to prevent misincorporation of BMAA and
apoptosis in human neuronal cell culture [34], we added a
cohort of vervets which daily received equal amounts of
BMAA and L-serine. Finally, to increase statistical rigour, we
replicated the first experiment. We used an oral dose
(210 mg kg21 d21) that previous investigators found using
gavage could be tolerated by macaques [10] and in the second
experiment added a cohort of vervets with a 10-fold dose
reduction (21 mg kg21 d21) to produce a cumulative BMAA
exposure closer to total lifetime Chamorro exposure.

2. Material and methods
(a) In vivo studies
The vervets studied in this report were housed in groups in large
outdoor enclosures at the Behavioural Science Foundation (BSF)
in St Kitts, West Indies. The BSF is a fully accredited biomedical
research facility with approvals from the Canadian Council on
Animal Care. The animal use protocol was approved by the Insti-
tutional Animal Care and Use Committee (IACUC) of BSF and
McGill University (Quebec, Canada). The vervet low-protein
diet was supplemented with fruit dosed with L-BMAA or other
test substances. Doses were prepared at the Institute for Ethno-
medicine, Jackson Hole, using a Mettler Toledo balance with a
Quantos automated powder dispensing module at a tolerance
of +0.1% of target dose. A small cavity was made in each
piece of fruit, and the test substance was placed inside. In the
first experiment, 16 juvenile vervets were presented daily with
a dosed piece of fruit, approximating a 210 mg kg21 d21 dose
based on average weight (3.1 kg) of the vervets. One cohort of
four was fed daily for 140 days a piece of fruit containing 651 mg
of L-BMAA, a second cohort was fed fruit with 651 mg of L-serine,
a third cohort was fed fruit dosed with 651 mg of L-BMAA plus
651 mg of L-serine, and a fourth control cohort received a piece of
fruit dosed with 651 mg of rice flour as a placebo.

For both the original experiment on the younger vervets and
the replication experiment on the adult vervets, 14 regions of
each vervet’s brain were investigated for neuropathology with
immunostaining for tau AT8 andb-amyloid 1–42. Three serial sec-
tions were studied on a 3 ! 4 grid with 100!magnification. In the
replication experiment, cohorts of eight adult vervets were fed
dosed fruit for 140 days. These 7-year-old vervets, which were
colony-born, were somewhat larger than the younger vervets in
the first experiment, so to approximate a 210 mg kg21 d21 dose
for these larger animals, the L-BMAA dose was increased from
the first experiment in order to adjust for weight. A cohort of ver-
vets was added in which the L-BMAA dose was reduced 10-fold to
approximate 21 mg kg21 d21 to be closer to a lifetime Chamorro
exposure. Thus in the replication experiment one cohort of eight
vervets received daily 987 mg of L-BMAA, a second cohort
received 98.7 mg of L-BMAA, a third cohort received 987 mg of
L-BMAA and 987 mg of L-serine, and a fourth control cohort
received 987 mg of rice flour. Periodic blood serum and cerebral

spinal fluid (CSF) samples were taken under ketamine anaesthesia
to confirm BMAA exposures in the vervets and absence of BMAA
exposure in the controls.

(b) Neuropathology
In both experiments, one hemisphere of each vervet brain was
frozen. The other hemisphere was immersion fixed in buffered for-
malin for histopathology. This hemisphere was freeze-sectioned at
40 mm and an adjacent series of coronal sections were processed
with antibody stains using the MultiBrain Services of Neuro-
Science Associates (Tennessee, USA). In both experiments,
adjacent sections were stained with AT8 immunohistochemistry
(IHC) stain with a thionine Nissl counterstain for hyperphos-
phorylated tau and b-amyloid (1–42) IHC stain for b-amyloid
deposits. In the first experiment, NFT (100! magnification) and
b-amyloid deposits (10! magnification) were identified from
blinded review of the stained sections and were quantified using
manual counts in three sections in series from non-overlapping
brain regions. In the second experiment, stained sections
were examined using automated images prepared with a Tissue-
Scope LE (Huron Digital Pathology, Ontario, Canada). Stained
serial sections were digitally scanned at 20! using a 350 mm2

grid for NFT and b-amyloid deposits. Thioflavine-S with a thio-
nine Nissl counterstain was used to confirm the presence of NFT
and plaques. The regions of interest (ROI) for each case were
initially drawn on the Nissl section and the ROI was mapped to
the immunostained slides. The ROI was marked with an array
tool to identify regional boundaries of the amygdala, hippo-
campus, entorhinal, frontal, temporal, motor, occipital and
cingulate cortices. Digital images were measured using NIH
IMAGE J64 software (1.44) converted from RGB colour to 8-bit fol-
lowed by applying a threshold to eliminate non-specific
background staining. After threshold correction, the images
were converted to binary allowing for quantification of pathologi-
cal features detected above background. The high-contrast images
were highly suited for digital quantification of pixel counts. Repre-
sentative sections were examined in parallel to validate the digital
measurements by comparison to manually derived b-amyloid
deposits and NFT counts [42].

(c) Analytical chemistry
Blinded samples of brain tissue, blood serum and CSF were ana-
lysed for BMAA content using triple quadrupole tandem mass
spectrometry (LC-MS/MS) with a precolumn 6-aminoquinolyl-
N-hydroxysuccinimidyl carbamate (AQC) derivatization using
the validated method determined by the Association of Analyti-
cal Communities AOAC International [43]. Negative controls
included matrix blanks from control vervets with no detectable
BMAA, AQC-derivatized blanks, internal standards and solvent
blanks (HCl, TCA). Product ion analysis of BMAA used m/z 459
as the precursor ion for collision-induced dissociation (CID) and
two-step mass filtering was performed during selective reaction
monitoring of BMAA after CID in the second quadrupole, moni-
toring the following transitions: m/z 459 to 119 CE 25 eV; 459 to
289 CE 23 eV; 459 to 171 CE 45 eV. The resultant product ions
were detected after passing the third quadrupole and their
relative abundances were quantified. BMAA was analytically
distinguished from its isomers using m/z 459 to 188 CE 38 eV
(2,4-diaminobutyric acid); 459 to 214 CE 35 eV (N-(2-ami-
noethyl)glycine); 459 to 258 CE 36 eV (BMAA) [44,45]. Double
ionized AQC-derivatized BMAA was also monitored with a pre-
cursor ion of m/z 230 and a product ion of 171 CE 27 eV.
Additionally, the following amino acids were monitored:
single derivatized lysine m/z 317, double derivatized lysine m/z
487, leucine m/z 302, serine m/z 276 and an internal standard
(b-N-methyl-d3-amino-DL-alanine-15N2) with a precursor ion
of m/z 464, and product ions m/z 124 CE 25 eV, 171 CE 45 eV,
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259 CE 36 eV and 294 CE 23 eV. BMAA tissue concentrations
were determined relative to concentration curves run daily in
spiked matrix samples from a control animal using b-N-
methyl-d3-amino-DL-alanine-15N2 as an internal standard.
Sample preparation techniques and complete analytical methods
appear in the electronic supplementary material.

(d) Statistical analysis
Because of the small sample size inherent in the experimental
design, and to avoid assumptions of normal distribution of resul-
tant data, we used non-parametric methods to compare medians.
To determine if chronic dietary exposure to BMAA results in
a greater density of NFT, the hypotheses H0 ¼ there is no differ-
ence in median NFT density between treatment groups and H1 ¼
there is a difference in median NFT density between treatment
groups were evaluated with a Kruskal–Wallis H-test, a non-
parametric analogue of an analysis of variance. A Jonckheere–
Terpstra trend test was used to test the hypotheses H0 ¼
median NFT density is independent of BMAA dose versus
H1 ¼median NFT density increases with BMAA dose. Different
hypotheses comparing median amounts of BMAA per cohort
treatment group were evaluated with a Kruskal–Wallis H-test:
H0 ¼ there is no difference in median BMAA concentrations
between treatment groups within plasma, brain or CSF, and
H1 ¼ there is a difference between median BMAA concentrations
between treatment groups in plasma, brain or CSF. (In this case,
medians of protein-bound BMAA were used for plasma and
brain samples, while medians of total BMAA content were
used for the CSF; see methods in electronic supplementary
material.) Other hypotheses evaluated with a Kruskal–Wallis
H-test were H0 ¼ there is no difference in the median ratios of
protein to total BMAA concentrations between treatment
groups in plasma or brain, and H1 ¼ there is a difference in the
median ratios of protein to total BMAA concentrations between
treatment groups in plasma or brain. To determine if chronic
dietary exposure to BMAA is related to the presence of b-amy-
loid deposits, two alternative hypotheses were evaluated with
a x2 test: H0 ¼ there is no difference between treatment types
on the number of vervets that develop b-amyloid deposits, and
H1 ¼ there is a difference between treatment types on the
number of vervets that develop b-amyloid deposits. Spearman’s
rank correlation coefficients were calculated to evaluate H0 ¼
there is no relationship between protein-bound or protein-
bound/total ratio of BMAA concentrations in the brain and
NFT counts, and H1 ¼ there is a relationship between protein-
bound or protein-bound/total ratio of BMAA concentrations in
the brain and NFT counts.

3. Results
In the first experiment, AT8-positive tangles and neuronal
processes, as well as sparse b-amyloid plaque-like deposits,
were observed in brain tissues of the L-BMAA-dosed vervets.
AT8-positive NFT were observed in the perirhinal and
entorhinal cortices, amygdala (paralaminar nucleus), motor
cortex, frontal cortex, temporopolar cortex and occipital
cortex of the BMAA-fed animals (figures 1–3). In contrast,
no AT8 immunopositive inclusions were visualized in the
hippocampus (CA1 or dentate gyrus). Sparse immunoposi-
tive b-amyloid deposits were observed primarily in the
frontal, temporal and motor cortices. In the first experiment,
the L-serine treated cohort and the control cohort of four ver-
vets were generally negative for tau AT8 and b-amyloid 1–42
neuropathology, while there was an 80–90% reduction of NFT
and plaques in the cohort fed equal amounts of L-BMAA and
L-serine; these results will be published elsewhere.

In the replication experiment, chronic L-BMAA exposures
for 140 days again led to hyperphosphorylated tau deposits
and NFT formation in all BMAA-fed vervets (figure 2).
Median NFT density differed significantly between treatment
groups (Kruskal–Wallis H statistic ¼ 16.4, p , 0.001). Fur-
thermore, there was a clear dose relationship between
chronic dietary exposure to L-BMAA and density of NFT
(Jonckheere–Terpstra trend test, Z ¼ 4.4, p , 0.00001). NFT
were abundant in vervets with chronic dietary exposure
to BMAA in the superior frontal, temporopolar (dorsal
and ventral), perirhinal, occipital and entorhinal (anterior
and posterior) cortices, and in the amygdala (figure 3). In
these brain areas, there was a highly significant dose relation-
ship between increasing dietary exposure to L-BMAA and
NFT density (Jonckheere–Terpstra trend test, Z-scores for
the 14 brain regions range between 3.13 and 4.87, p ,

0.001–0.00001; figure 3). The regional differences in NFT
and b-amyloid deposit counts in the brain areas examined
were profound. For example, in the occipital cortex, other
than controls, vervets in the low-dose treatment had the
lowest median count (65) NFT density, while the median
density (136) of the high-dose BMAA cohort was more than

(a) (b)

(c) (d)

(e) ( f )

Figure 1. Neuropathology of vervet brain tissue with chronic dietary BMAA
exposures; a comparison of thioflavine-S and b-amyloid (1 – 42) immuno-
reactivity. (a) Thioflavine-S stained cells and neuropil threads in the motor
cortex; scale bar, 150 mm. (b) Intraneuronal b-amyloid accumulation in
neurons in motor cortex. (c) Vervet extracellular thioflavine-S deposits in
the frontal cortex. (d ) Localized b-amyloid immunostained neocortical
deposits in vervet brains. (e) Thioflavine-S positive senile plaques and tangles
in human AD temporal cortex. ( f ) b-amyloid senile plaques in human tem-
poral cortex of AD patient (86-year-old male; 400! magnification). Human
brain sections from AD patients were run as reference controls.
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twice the low-dose NFT density. Co-administration of
L-serine with high-dose BMAA significantly reduced
median NFT density (124). This reduction in NFT induced
by L-serine occurred in all measured areas of the brain.

Supplementing the diet with L-serine resulted in more than
a 50% NFT reduction in median NFT densities within five
brain regions: temporal (dorsal and ventral), primary motor,
entorhinal (posterior) and insula cortices. In the perirhinal

M1
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cd

Pu

ac

Amy EC

PrC

cgs
L

Bmc

Bpc

PL

(a) (b)

(c)

(d )

(e)

(k) (l) (m)

(o) (p)(n)

( j)

(g) (h) (i)( f )

Figure 2. Microscopic pathology of chronic dietary L-BMAA exposures in vervets. Representative low-power images (5! magnification) of hyperphosphorylated tau
(AT8) immunostained coronal hemisections from control (a,c) and L-BMAA-fed vervets (b,d ). AT8 immunostaining is seen in the amygdala (Amy), entorhinal (EC),
perirhinal (PrC), primary motor (M1) and temporal cortices of L-BMAA-fed vervets. Higher-power images show predominant tau AT8 staining in superficial cortical
layers II and III with more robust staining over the entorhinal and perirhinal cortices (25! magnification) (d ). Microscopic images (original magnification !120)
show NFT in vervets fed L-BMAA. Tangle-like tau aggregates are seen in the temporal gyrus (e,f ). Dense intracellular tau immunolabelling (g – i) and extracellular
deposits ( j,k) were seen in the parahippocampal gyrus. Abundant neuropil threads, tangles and dystrophic neuronal processes are observed in layers II and III of the
perirhinal cortex (I, high-power images shown in l,m) and the paralaminar nucleus of the amygdala (n). Tau plaques were seen in L-BMAA-fed vervets ranging from
large and diffuse (o) to small dense aggregates ( p). ac, anterior commissure; Amy, amygdala; Bmc, basal nucleus of the amygdala, magnocellular region; Bpc, basal
nucleus of the amygdala, parvicellular subdivision; Cd, caudate; cgs, cingulate gyrus sulcus; EC, entorhinal cortex; L, lateral nucleus of the amygdala; LF, lateral
fissure; M1, primary motor cortex; PrC, perirhinal cortex; PL, paralaminar nucleus; Pu, putamen; STS, superior temporal sulcus.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20152397

5



cortex, amygdala and anterior cingulate gyrus, L-serine
reduced NFT densities more than 35%.

A highly significant ( p , 0.00001) dose relationship
between chronic dietary exposure to L-BMAA and NFT
density was also found in other brain regions, but no pro-
found differences in NFT densities were found between the
low-dose and control cohorts in these regions which included
the dentate gyrus, substantia nigra, caudate nucleus, anterior
cingulate gyrus, primary motor cortex and the insula cortex
(figure 3b). Finally, dose relationships by treatment group
were also significant in the entorhinal cortex, but this brain
area differed from the others in that co-administration of
L-serine led to an NFT density not only lower than high-
dose BMAA, but also lower than low-dose BMAA (figure 3b).

Chronic dietary exposure to BMAA significantly increased
the likelihood of a vervet developing b-amyloid deposits
(x2 ¼ 15, p , 0.01). One of the eight low-dose BMAA vervets,
three of the eight high-dose BMAA vervets and two of the
eight high-dose BMAA plus L-serine vervets had b-amyloid
deposits. These b-amyloid deposits were diffuse and sparse
in distribution (figure 1). b-amyloid deposits were not found
in any of the control vervets.

The relationship between NFT counts and measured con-
centrations of BMAA in the occipital cortex was also of
interest. BMAA could not be detected in control vervets or
baseline samples using LC-MS/MS. Protein-bound BMAA

occurred in brain tissues of individual L-BMAA-fed vervets
at concentrations between 0.24 and 2.2 mg mg21 (see elec-
tronic supplementary material), similar to Chamorro ALS/
PDC brain tissues (median ¼ 0.6 mg mg21, range ¼ 0.2–
1.2 mg mg21) [46], and was detected in blood plasma and
CSF. Even within the low-dose cohorts, protein-bound
BMAA within vervet brain tissues (0.24–0.78 mg mg21)
reached concentrations consistent with the Guam disease.

There was no significant difference in protein-bound BMAA
concentrations in blood plasma between treatment groups, but
there were significant differences for BMAA concentrations for
brain and CSF samples (Kruskal–Wallis H statistics (corrected
for ties) of 8.69 and 9.09 ( p , 0.05). There was no significant
difference in the ratio of protein to total BMAA concentrations
in brain, but there was in blood plasma (H statistic ¼ 13.24,
p , 0.01). Finally, no significant relationship was found between
protein-bound BMAA and NFT density as well as in the protein-
bound/total BMAA ratio and NFT density in vervet brains as
determined by Spearman’s rank correlation coefficients.

4. Discussion
(a) L-BMAA triggers neuropathology
Chronic dietary exposure to L-BMAA results in the formation
of NFT and b-amyloid deposits in a clear dose relationship.
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Other protein inclusions similar to those found in brain
tissues from Chamorros who died with ALS/PDC were
also found. Chronic dietary exposure to L-BMAA triggered
tauopathies in all BMAA-dosed vervets including those at
the low-dose treatment but NFT densities varied between
brain regions. Concentrations of BMAA in vervet brains fell
within the range measured in post-mortem brain tissues of
Chamorros who died with ALS/PDC confirming BMAA
exposures in the vervets that are clinically relevant. Further-
more, the regional densities of NFT are similar in both the
Chamorros and L-BMAA-fed vervets [47,48].

There was a significant dose relationship between BMAA
and NFT density in all affected regions of the brains
(figure 3). The distribution of NFT and their relationship to
dose exposure in the temporal lobe is similar to Braak 1 early
stage AD pathology [49] (figure 3). Consistent with the neuro-
pathology of preclinical AD, no profound clinical symptoms

were observed in any of these vervets in the two experiments.
Specific immunological methods (AT8) permit evaluation of
neuronal changes before the actual formation of NFT and neu-
ropil threads (figure 2). In vervets with chronic dietary
exposure to BMAA, we observed changes in the transentorh-
inal region of the temporal lobe, but none in Ammon’s horn
of the hippocampus. Extensively distributed NFT formations
with gliosis characterize ALS/PDC. Dementia in these cases
is attributable to tangles and neuronal dropout in the neo-
cortex, resembling the pattern reported for AD, but far more
widely distributed [4]. NFT in ALS/PDC brain tissues stain
positively with antibodies to hyperphosphorylated tau protein
[5]. Thus, the distribution of AT8-positive tangles following
chronic dietary BMAA exposure in vervets is similar to the
histopathology reported previously in ALS/PDC.

The paucity of clinical symptoms in the BMAA-fed vervets
corresponds to the finding of NFT in 5/29 asymptomatic

O

N
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H
OH

(BMAA)

vervet

tau proteins hold microtubule together

hyperphosphorylated tau separate
from the microtubule

extracellular fluid

amyloid precursor
protein (APP)

cytosol

1

42
HOOC

hyperphosphorylated tau filaments

paired helical filaments (PHF)

neurofibrillary tangles (NFT)

1
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42

Ab-42 a helix
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amyloid plaque

Figure 4. Theoretical pathways of development of ALS/PDC and AD neuropathology from chronic dietary BMAA exposure. (a) Tau proteins which bind microtubules
become hyperphosphorylated, leading to dissociation of hyperphosphorylated tau fragments. These form paired helical filaments, leading to the formation of
neurofibrillary tangles. (b) The APP is cleaved, producing b-amyloid (Ab-42) fragments which are in an a-helix conformation. These change to a b-pleated
sheet conformation, oligomerize, forming amyloid plaques.
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Chamorro patients who died without ALS or PD being recog-
nized clinically [4]. Furthermore, b-amyloid plaques have been
detected in human ALS/PDC patients who remain cognitively
intact [50]. The fact that BMAA-dosed vervets produced NFT
and rare b-amyloid deposits in both experiments supports
the theory that BMAA in the traditional diet is a cause of the
Chamorro disease.

(b) Neurofibrillary tangles and b-amyloid deposit
formation

Normal microtubules which serve as the pathways for antero-
grade and retrograde transport within the neuron unravel as the
soluble monomeric tau proteins become hyperphosphorylated
anddetachfromthemicrotubule.Thesehyperphosphorylatedtau
proteins form paired helical filaments, and thence aggregates
leading to NFT (figure 4a). In the b-amyloid plaque pathway
(figure 4b), amyloid precursor protein (APP) is cleaved byb-secre-
tase and g-secretase into b-amyloid fragments. Although the
initial confirmation of Ab-42 is an a-helix, transformation to a
b-pleated sheet conformation is a necessary step in plaque
formation. When theb-pleated sheets oligomerize, they can even-
tually join into polymers which form plaques (figure 4b). Our data
suggest that chronic dietary exposure to BMAA triggers both the
NFT and b-amyloid pathways.

(c) Neuroprotective mechanisms of L-serine
Larger BMAA doses resulted in increased protein-bound
BMAA concentrations in the brain. However, although
L-serine reduced NFT density, it did not alter the ratio of
protein-bound to total BMAA, which may be physiologically
invariant. Possible neuroprotective mechanisms of L-serine
include prevention of BMAA misincorporation in specific
proteins involved in NFT formation. Misincorporation at
rates as low as 1/10 000 can result in neurodegeneration
[35], but such levels may be below our ability to differentiate.
There may also be additional neuroprotective mechanisms
other than prevention of misincorporation.

(d) Implications of chronic BMAA exposure for
neurodegenerative disease

BMAA-producing cyanobacteria occur globally, perhaps
causing similar neuropathologies. Our finding that all of
the low-dose vervets developed tauopathies with NFT has
implications for human health. BMAA may serve as an
environmental trigger for some forms of other neurodegen-
erative illnesses including sporadic ALS and AD. In human
beings, increasing age is a risk factor for ALS, AD and PD.
We have initiated experiments to determine if chronic dietary

exposures of aged vervets to BMAA results in more profound
histopathology.

We have sponsored FDA-approved human clinical trials
(ClinicalTrials.gov Identifier NCT01835782) to determine if
L-serine is a safe and efficacious treatment to reduce disease
progression in ALS patients. We hope to initiate human clini-
cal trials of L-serine for mild cognitive impairment and early
onset AD in the near future.

In conclusion, Koch’s postulates [38] have been satisfied
with respect to establishing chronic dietary exposure to
BMAA as a cause of a neurodegenerative illness: (i) BMAA
has been identified in post-mortem brain tissue from ALS/
PDC patients from Guam who consume a BMAA-rich diet
but not in control patients who have not been exposed to the
traditional Chamorro diet, (ii) vervets fed BMAA over 140
days developed NFT and b-amyloid deposits, and (iii)
BMAA was isolated and identified in BMAA-fed vervets that
had NFT and b-amyloid deposits in their brains. This study
indicates that chronic exposure to BMAA can trigger neurode-
generative illness and that adding L-serine to the diet can
reduce the risk of disease.
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